
Mark scheme

Question Answer/Indicative content Mark Guidance

1

1 mark for each input to max 2 e.g.

• Entering a name
• Selecting a vehicle
• Pressing arrow key to move forward
• Pressing arrow key to move backward
• Pressing arrow key to move left
• Pressing arrow key to move right

1 mark for each output to max 2 e.g.

• Images of vehicles to choose from
• Background of area
• Image of other vehicles
• Image of controls and description of what they do

4

Allow any feasible
input/output for scenario

Examiner’s Comments

While many candidates
scored full marks for this
question for identifying
suitable inputs and outputs
within the context of the
problem a number of
candidates scored no
marks for erroneously
giving input or output
devices. Sometimes
responses were unqualified
such as ‘left arrow key’
rather than ‘left arrow to
turn left’ where candidates
did not identify an input
within the context of the
scenario as an input to the
game.

 Total 4

2

1 mark for each input to max 2

• Username
• Password

1 mark for output
e.g.

• Message to request input
• Message to state login successful
• Message to say login unsuccessful

3

Examiner’s Comments

This question was generally
well answered by most
candidates, but answers
had to be given in the
context of the scenario.
Some less successful
responses mistakenly
identified input/output
devices rather than specific
examples of inputs and
outputs.

 Total 3

3 a i

1 mark for:

• isInteger
• number
• result
• count

1

Penalise excessive spaces
in identifiers such as
ascii Value
instead of asciiValue

Examiner’s Comments

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

• asciiValue This question was
generally well done
(although slightly less well
done than parts (a) (ii) and
(a) (iii)), but many
candidates did very well.
The most common
erroneous responses were
giving the names of
predefined
functions/properties or
giving relational operators.

 ii (0)5 1

Examiner’s Comments

This question required an
exact answer only and was
answered correctly by the
majority of candidates.

 iii (0)3 1

Examiner’s Comments

This question also required
an exact answer only and
was answered correctly by
the majority of candidates.

 b

1 mark each to max 2:

• One piece of code can be used many times / in
multiple places / makes code more efficient

• No need to write the same code multiple times
• Takes less time to plan/design/code the program
• Easier error detection as fix once and it corrects in

each place / less likely to have errors as code is not
written multiple times

• Makes it easier to maintain the program

2

Examiner’s Comments

Many less successful
responses gave vague
generalities such as ‘saves
time’ or ‘more efficient’
without specifying why or
how. Points given must be
qualified in some way at A
Level. For example, ‘saves
development time as pre-
written routines are
available’.

Pre-written or pre-tested,
and saving development
time due to already being
written, were the most
popular answers.

 Total 5

4 i

1 mark per bullet e.g.

• stage (e.g. stage 1, stage 2, stage 3)
• city name (e.g. London)
• speed (e.g. slow, normal, fast)

2

Examiner’s Comments

Most candidates
successfully identified the
relevant potential inputs of
city/stage/speed from the
given scenario. Some

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

candidates suggested
alternative inputs such as
‘magnitude of earthquake’
which were also given
marks as they were valid
inputs for a simulation
relating to earthquakes.

 ii

1 mark per bullet to max 2, e.g.

• Does the build-up stage need to be shown?
• Does the earthquake taking place needs to be shown?
• Does the aftershock stage needs to be shown?

2

Allow other suitable
examples

Examiner’s Comments

Few candidates were given
full marks for this question.
There was some repetition
of checking user input
values, which was given in
the stem of the question.
There were also many
statements of possible
calculations rather than
clearly expressed
conditions or questions.
More successful responses
included decisions such as
‘have buildings of a certain
typ e survived the
earthquake?’.

 Total 4

5 i

1 mark per bullet

• by reference will reorder the contents of the array
• …so the new order can be accessed by the main

program / so will be saved when the procedure ends
• by value will change the array only in this procedure
• … and so would need to return the array.

3

Examiner’s Comments

Many candidates struggled
to go beyond recall of
definitions for calling by
reference and calling by
value and struggled to
apply it to the code given
and to provide a detailed
explanation.

The bubble sort was
defined as a procedure and
not a function, so if
numbers had been passed
by value, a copy of the
array would have been
passed, and any changes
made would not have been
kept after the procedure
had completed execution.

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

 ii A loop that repeats a fixed / set number of times 1

Examiner’s Comments

Most candidates could
accurately define a ‘count
controlled loop’ as one that
repeated a predefined
number of times, although
some candidates gave an
ambiguous response that
was equally applicable to a
conditional loop.

 iii

• To temporarily hold a value (for numbers[x])…
• …while it is being transferred from one position to

another…
• ….in the array numbers
• To stop values over writing each other

3

Examiner’s Comments

Many candidates found it
difficult to explain the
purpose of the holdValue
variable in context. Where
candidates achieved some
of the marks, they most
frequently identified
holdValue as a temporary
store that was required to
prevent accidental
overwriting of data during
the swap process.
Relatively few were able to
accurately describe how the
variable allowed the
contents of dataArray[x]
and dataArray[x+1] to
be swapped.

Exemplar 1

This exemplar very clearly
states exactly how and why
the variable holdValue is
required.

 iv

• Add a (second outer) loop
• That will repeat for each pass / repeat until the flag is

set to true at the end of a pass 2

Examiner’s Comments

Many candidates found it
challenging to apply
knowledge of a bubble sort
to the code given. While a
pleasing number identified
the need to have an outer
loop, there were far fewer

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

who were able to expand
on this to explain that this
was required to repeat the
process for the requi red
number of passes, or until
no swaps had occurred
during a pass.

 Total 9

6

1 mark for the purpose and 1 mark for matching appropriate
name (4 marks total), e.g:

• Pointer to the first element in the queue
• firstElement / any other meaningful name
• Pointer to the last element in the queue / Pointer to the

first free element in the queue
• lastElement / any other meaningful name

4AO1.
2 (4)

Must cover purpose and
name for 2 marks for each
pointer.

 Total 4

7 a

1 mark per bullet

• Calculation of result to 3
• Call with thisFunction(theArray, num1=4,

num2=7, num3=35)
• Result = 5
• call with

thisFunction(theArray,num1=6,num2=7,num3
=35)

• (Result = 6) return of value 6

Function call num1 num2 num3 result
thisFunction

(theArray,0,7,35) 0 7 35 3

thisFunction
(theArray,4,7,35) 4 7 35 5

thisFunction
(thisArray,6,7,35) 6 7 35 6

5
AO2.1

(3)
AO2.2

(2)

 b Binary search
1

AO2.1
(1)

 c

1 mark per bullet to max 4, e.g.

• Recursion uses more memory…
• …iteration uses less memory
• Recursion declares new variables /variables are put

onto the stack each time…
• …iteration reuses the same variables

4
AO1.1

(2)
AO1.2

(2)

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

• Recursive can run out of memory/stack space…
• …while iteration cannot run out of memory
• Recursion can express a problem more elegantly / in

fewer lines of code…
• …while iteration can take more lines of code / be

harder to understand
• Recursion will be self-referential / will call itself…
• … whereas iteration does not

 d

1 mark per bullet to max 6

• Retains function call
• Uses a loop
• …that will loop until all elements inspected or value

found
• Updates num1 appropriately
• Updates num2 appropriately
• Returns -1 in the correct place if the value has not

been found
• Returns the result in the correct place if the value has

been found

e.g.
function thisFunction(theArray, num1, num2, num3)

while (true)
 result = num1 + ((num2 - num1) DIV 2)
 if num2 < num1 then
 return -1
 else
 if theArray[result] < num3 then
 num1 = result + 1
 elseif theArray[result] > num3 then
 num2 = result - 1
 else
 return result
 endif
 endif
endwhile
endfunction

6
AO2.2

(3)
AO3.1

(3)

 Total 16

8

1 mark pet bullet to max 3

• Descending order
• Line 07 (dataArray[tempos]<temp) has the

comparison…
• …that checks if current position is less than item to

insert and…
• …breaks out of loop when current position is less than

or equal to item to insert

3
AO1.2

(1)
AO2.2

(2)

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

 Total 3

9 a

1 mark per pointer

• queueHead: Point to the first element in the queue /
next element to remove

• queueTail: Point to the last element in the queue

2
AO1.2

(2)

 b

1 mark per bullet up to max 5

• first 3 jobs removed
• 128 and 129 added in positions 4 and 5 respectively
• no additional jobs
• queueHead being 3 (FT errors)
• queueTail being 5 (FT errors)

5
AO2.1

(2)
AO2.2

(3)

The underlying
implementation of the
queue has not been
specified, so allow
alternative valid answers.
e.g.
queueHead = 0
queueTail = 2
Location 2: 129
Location 1: 128
Location 0: 127

 c i

1 mark per bullet to max 5

• Function declaration
• Checking if queue is empty
• …returning null
• (Otherwise) incrementing queueHead
• …returning buffer[queueHead-1]

e.g.
function dequeue()
 if queueHead > queueTail then
 return null
 else
 queueHead = queueHead + 1
 return buffer[queueHead-1]
 endif
endfunction

5
AO2.2

(2)
AO3.3

(3)

Note: Accept alternative
valid underlying
implementation answers
e.g. Shifting all elements in
queue forward.

 ii

1 mark per bullet to max 6

• Function declaration taking parameter
• Checking if queue is full
• …returning -1
• (Otherwise) incrementing queueTail
• Adding newJob to buffer(queueTail)

6
AO2.2

(3)
AO3.3

(3)

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

• Returning 1

e.g.
function enqueue(newJob)
 if queueTail == 99 then
 return -1
 else
 queueTail = queueTail + 1
 buffer[queueTail] = newJob
 return 1
 endif
endfunction

 iii

1 mark per bullet to max 8

• Inputting user choice
• If enqueue chosen input job name
• …call enqueue with input value as parameter
• …check if return value is -1 and output full
• …otherwise output message that item is added
• If dequeue chosen
• …call dequeue and save returned value
• …output returned value (jobname) if not null
• …or output queue is empty

e.g.
main()
 choice = input("Add or remove?")
 if choice == "ADD" then
 jobname = input("Enter job name")
 returnValue = enqueue(jobname)
 if returnValue == -1 then
 print("Queue full")
 else
 print("Job added")
 endif
 else
 returnValue = dequeue()
 if returnValue == null then
 print("Queue empty")
 else
 output returnValue
 endif
 endif
endmain

8
AO2.2

(2)
AO3.3

(6)

Allow equivalent checks /
logic

 d

1 mark per bullet to 3

• Check if either head or tail are incremented to above
99

• … set to be 0 instead
• When checking if array is full check if (queueTail ==

queueHead – 1) OR (queueTail==99 AND
queueHead==0)

3
AO2.1

(1)
AO2.2

(2)

Credit equivalent modulo
arithmetic solution

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

 e

1 mark per bullet to max 3, e.g.

• Use a different structure e.g. a linked list
• …items can be added at different points in the linked

list depending on priority
• …by changing the pointers to items needing priority
• Have different queues for different priorities
• …add the job to the queue relevant to its priority
• …print all the jobs in the highest priority queue first

3
AO2.1

(2)
AO2.1

(1)

Allow other suitable
descriptions that show how
the program could be
amended.

 Total 32

1
0 a • 10

1

A03.2
(1)

 b • 30
1

A03.2
(1)

 c • 10
1

A03.2
(1)

 Total 3

2.1.2. Thinking Ahead PhysicsAndMathsTutor.com

	Mark scheme

